Y-Support Weldment Analysis, based on the KHI proposal as of Feb. 5, 1999:

The Y-support weldment is as follows (please, refer to weldment dwg.):

(a) 20 mm weld (was 10 mm):

 $h_1 := 20 \cdot (0.707) \cdot mm$, effective weld throat

 $L_1 := (365 + 950 + 378 + 285 + 100 + 120 + 54 + 24 + 38 + 41) \cdot mm$, weld length

 $L_1 = 2.355 \cdot 10^3$ •mm

 $A_{w1} = L_1 \cdot h_1$ $A_{w1} = 3.33 \cdot 10^4 \cdot mm^2$, effective weld area

(b) 20 mm weld (was 7 mm):

h $_2 = 20 \cdot (0.707) \cdot mm$, effective weld throat

L₂ := 1302·mm

 $A_{w2} = L_2 \cdot h_2$; $A_{w2} = 1.841 \cdot 10^4 \cdot mm^2$, effective weld area

(c) 5 mm weld:

 $h_3 := 5 \cdot (0.707) \cdot mm$, effective weld throat

 $L_3 := (128 + 200 + 274) \cdot mm$; $L_3 = 602 \cdot mm$

 $A_{w3} := L_3 \cdot h_3$; $A_{w3} = 2.128 \cdot 10^3 \cdot mm^2$, effective weld area

The the load on a Y-support weldment, in rounded figure, is about:

 $P := 2.450000 \cdot N$ (Refer to Cold Vessel Analysis)

Hence, the shear stress on the weldment is:

 $S_s := \frac{P}{\left(A_{w1} + A_{w2} + A_{w3}\right)}$; MPa := $10^6 Pa$ < ----(conversion constant)

 $S_{s} = 16.717 \circ MPa$

Considering that the fillet weldment has a 45% eff. and the joint has an allowable stress, Pa = 69 MPa, equal to the parent metal (Al5083) as taken from the ASME BPV Code, the approximate factor of safety, FS, is:

 $P_a := 69 \cdot MPa$

 $FS := \frac{P_a}{\left(\frac{S_s}{0.45}\right)}$

FS = 1.857

DWG. PF - B -008: WELDING OF Y-SUPPORT